MATH4050 Real Analysis
 Assignment 5

There are 8 questions in this assignment. The page number and question number for each question correspond to that in Royden's Real Analysis, 3rd or 4th edition.

1. (3rd: P.70, Q19)

Let D be a dense set of real numbers, that is, a set of real numbers such that every interval contains an element of D. Let f be an extended real-valued function on \mathbb{R} such that $\{x: f(x)>\alpha\}$ is measurable for each $\alpha \in D$. Show that f is measurable.
2. (3rd: P.70, Q20; 4th: P.63, Q19 and P. 64 Q20)

Show that the sum and product of two simple functions are simple. Show that for any $A, B \subset \mathbb{R}$,

$$
\begin{aligned}
\chi_{A \cap B} & =\chi_{A} \cdot \chi_{B} \\
\chi_{A \cup B} & =\chi_{A}+\chi_{B}-\chi_{A \cap B} \\
\chi_{\widetilde{A}} & =1-\chi_{A} .
\end{aligned}
$$

(Note: $\widetilde{A}=$ complement of A)
3. (3rd: P.71, Q23)

Prove Proposition 22 (3rd ed.) by establishing the following lemmas:
a. Give a measurable function f on $[a, b]$ that takes the values $\pm \infty$ only on a set of measure zero, and given $\varepsilon>0$, there is an M such that $|f| \leq M$ except on a set of measure less than $\frac{\varepsilon}{3}$.
b. Let f be a measurable function on $[a, b]$. Given $\varepsilon>0$ and M, there is a simple function φ such that $|f(x)-\varphi(x)|<\varepsilon$ except where $|f(x)| \geq M$. If $m \leq f \leq M$, then we may take φ so that $m \leq \varphi \leq M$.
c. Given a simple function φ on $[a, b]$, there is a step function g on $[a, b]$ such that $g(x)=\varphi(x)$ except on a set of measure less than $\frac{\varepsilon}{3}$. [Hint: Use Proposition 15 (3rd ed.).] If $m \leq \varphi \leq M$, then we can take g so that $m \leq g \leq M$.
d. Given a step function g on $[a, b]$, there is a continuous function h such that $g(x)=h(x)$ except on a set of measure less than $\frac{\varepsilon}{3}$. If $m \leq g \leq M$, then we may take h so that $m \leq h \leq M$.

Proposition 15 is the Littlewood's first principle (See lecture notes Ch3 P.12-13).

Proposition 22: Let f be a measurable function defined on an interval $[a, b]$, and assume that f takes the value $\pm \infty$ only on a set of measure zero. Then given $\varepsilon>0$, we can find a step function g and a continuous function h such that

$$
|f-g|<\varepsilon \text { and }|f-h|<\varepsilon
$$

except on a set of measure less than ε; i.e. $m(\{x:|f(x)-g(x)| \geq \varepsilon\})<\varepsilon$ and $m(\{x:|f(x)-h(x)| \geq$ $\varepsilon\})<\varepsilon$. If in addition $m \leq f \leq M$, then we may choose the functions g and h such that $m \leq g \leq M$ and $m \leq h \leq M$.
4. (3rd: P.71, Q24; 4th: P.59, Q7)

Let f be measurable and B a Borel set. Show that $f^{-1}[B]$ is a measurable set. [Hint: The class of sets for which $f^{-1}[E]$ is measurable is a σ-algebra.]
5. (3rd: P.71, Q25; 4th: P.59, Q10)

Show that if f is a measurable real-valued function and g a continuous function defined on $(-\infty, \infty)$, then $g \circ f$ is measurable.
6. (3rd: P.73, Q29)

Given an example to show that we must require $m(E)<\infty$ in Proposition 23 (3rd ed.).

Proposition 23 is the claim $(*)$ in the proof of Egoroff's theorem in the lecture notes (Ch3, P.25), except the pointwise convergence a.e. on E is replaced by pointwise convergence on E.
7. (3rd: P.73, Q30)

Prove Egoroff's Theorem.
8. (3rd: P.74, Q31)

Prove Lusin's Theorem: Let f be a measurable real-valued function on an interval $[a, b]$. Then given $\delta>0$, there is a continuous function φ on $[a, b]$ such that $m(x: f(x) \neq \varphi(x))<\delta$. Can you do the same on the interval $(-\infty, \infty)$?

